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What is Quantum Chaos? 

Preface 

This issue of the Journal of Statistical Physics is devoted to the theme of 
what is loosely (but colorfully) called Quantum Chaos. The idea for this 
special issue grew out of a symposium which was held at Rutgers as part 
of the 65th Statistical Mechanics Meeting in May 1991. We have tried to 
ensure that the papers presented here have a greater pedagogical content 
than usual and also that they provide sufficient background material. 

Before discussing the question raised in the title, which we should 
warn the reader is only partially answered here, we have to say something 
about classical or deterministic chaos. Though building on a foundation a 
century old, work in dynamical systems in the last decades has resutted in 
a shift in perspective in physics and in science as a whole. The existence of 
chaos in classical mechanics has challenged many of our long-held beliefs 
about "predictability" in deterministic systems. The time evolution of even 
very simple systems having only a few degrees of freedom typically exhibits 
complicated "unpredictable" behavior. This ubiquitousness surprised us 
even more because of how well all the "usual" problems of classical 
mechanics had seemed to fit the old paradigm. Clearly this was due to our 
choice of problems. We only tackled those which we could solve, and in the 
absence of computers those were the non-chaotic ones. Still, given the work 
of Poincar6, Hill, Hadamard, etc., and our everyday experiences of chaos, 
how could we physicists have mostly missed it? 

In any case, the shift in perspective opened the way for a more 
penetrating study of truly complex systems, turbulent fluid flow being one 
example. These problems were long avoided by many physicists because 
they were deemed messy extensions of known microscopic laws. However, 
within the "chaos view" of nature, complex and unexpected behavior is 
"emergent" from simple elements or principles, and an inspection of the 
microscopic laws does not readily reveal or shed light on this behavior. 
Within this complexity, however, there lies a deeper order, e.g., weather 
and billiards both have similar sensitivity to initial conditions. One can 
even be more quantitative and find universality classes which relate chaotic 
phenomena occurring in very different situations. All this of course looks 
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familiar to the statistical physicist, and so our statistical mechanical view of 
the universe remains central to our understanding of nature. 

But where does this chaos in classical systems come from? Clearly it 
arises from the nonlinearity in the equations of motion. Attempts to 
linearize everything led to the integrable or "harmonic oscillator" view of 
typical behavior. On the other hand, we all know that we live in a world 
governed by quantum mechanics. Here it is the wave function which 
is generally thought to contain the complete description of the system, 
replacing the phase space point of classical theory. The evolution of the 
wave function as given by the Schr6dinger equation is linear. (In fact, any 
nonlinear correction to quantum mechanics would have to be exceptionally 
small to be consistent with recent experiments.) Thus quantum mechanics 
should not contain any chaos. The lack of chaos in the Schr6dinger evolu- 
tion can be made quite precise: the time evolution of the wave function or 
density matrix of an isolated, spatially bounded, quantum system is almost- 
periodic and is not sensitive to initial conditions. 

Unlike the exponentially divergent trajectories of classically chaotic 
systems, quantum dynamics is more stable to small perturbation and 
is marked by pronounced recurrences as dramatically exhibited in the 
so-called collapses and revivals of the wave function. This linear evolution 
is completely consistent with chaotic behavior of suitable quantum 
observables for "short" times and these times can become very large indeed 
for macroscopic systems. Chaos can also occur when part of a quantum 
system can be regarded as classical, leading to a Schr6dinger equation with 
a time-dependent external field. While this certainly puts to rest the 
concerns or "problems" raised by some people about the compatibility 
between quantum mechanics and chaos, it does not give a direct quantum 
explanation of the origin of chaos-~comparable to that of the nonlinearity 
of the classical equations of motion--without  involving a classical limit. 

An important question then is whether there is "true" chaos in quan- 
tum mechanics or whether some "classical limit" is in fact necessary for the 
emergence of chaos in a quantum world? While the second possibility 
presents no significant problem (other than understanding of how the 
classical behavior emerges in a quantum world) for those manifestations of 
chaos of which we have direct experience, e.g., turbulence or the motion of 
a tossed coin, it probably does not tell the whole story. It would in fact be 
quite surprising if it did, since on the microscopic level the observational 
predictions of quantum mechanics are generally of a stochastic nature 
and thus presumably more chaotic than those of classical mechanics. Yet 
classical mechanics is where the chaos seems to be. 

The origin of this apparent paradox possibly lies in the fact that we 
have been dealing exclusively with the evolution of an isolated system. Now 
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the construction of a subsystem which one can treat as "effectively isolated" 
is much more problematic in quantum mechanics than in classical 
theory--a fact which manifests itself in the dichotomy between the 
Schr6dinger evolution and the (random) reduction of the wave function 
which occurs in "observations." This wave function entanglement aspect of 
quantum chaos, indeed of all behavior, appears to us to be tied up with 
very fundamental aspects of quantum theory and still needs a lot of 
investigation--it is barely touched upon in this volume. 

Indeed, even the question raised earlier, of "How does classical chaos 
emerge from quantum mechanics?"--a question about the correspondence 
principle--is often overlooked. Instead, the principal question explored 
here and in current research in quantum chaos in general is "What are the 
quantum manifestations of classical chaos?" Answering this question leads 
to valuable insights into the properties of the stationary states and 
dynamics of a variety of systems, including, for example, highly excited 
molecules. These insights generally come from exploring the quantum 
manifestations of classical chaos through a semiclassical viewpoint, in 
which objects have many of their classical attributes, but also carry phase 
information. It is surprising that this is possible, since the chaotic classical 
dynamics would seem to prevent application of methods like the WKB 
approximation. However, there are alternative quantization procedures, 
such as the Gutzwiller trace formula, that do the trick. These provide 
information on quantities such as the density of states, localization of the 
eigenfunctions ("scarring"), and spectra in terms of periodic or spatially self 
intersecting orbits. It has surprised many that the description obtained in 
this way is quite accurate in predicting the true quantum behavior, even 
quite far from the classical limit. 

To make better contact with classical chaos, it is important to have 
systems that can be fully tackled quantum mechanically as well. Such 
systems, not surprisingly, have been simple, model systems with few 
degrees of freedom. These are, in fact, often the same ones as are treated 
semiclassically. One example, the microscopic analogy of the dynamics of 
an asteroid subject to periodic perturbation by Jupiter (a chaotic system), 
is the hydrogen atom in a strong radio frequency field. The question then 
is: If the classical dynamics of the Bohr atom exhibits chaotic behavior, 
what happens to real atoms? Because examples like this are simple and 
clearly quantum mechanical, atomic physics is a natural place to look for 
quantum chaos. However, other areas, such as nuclear physics, and other 
models, such as kicked rotors, all play important roles in providing simple 
examples. 

These models tell us that the statistical behavior of the quantum 
energy levels changes as the classical system passes from regular to chaotic. 
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Level repulsion is found, leading to regions of complicated avoided 
crossings. In this way chaos appears to allow global energy flow through 
state space by the coupling of many states of differing symmetry of the 
"unperturbed" Hamiltonian. The corresponding macroscopic view of such 
energy flow is via the phase space structure: stable periodic orbits and 
nearby quasiperiodic orbits are dynamical barriers. As these orbits break 
up, global energy flow becomes possible. That tunneling through these 
dynamical barriers is fundamentally different from ordinary potential tun- 
neling is among the topics addressed in this volume. Energy level statistics 
thus provide a quantum signature and the beginnings of a microscopic 
explanation for the emergent classical behavior: Wigner-Dyson statistics 
(includes GOE, GUE, and GSE) indicate chaos in the classical system. 
Poisson statistics (with its associated level crossings) indicates a regular 
classical system. There are many other quantum manifestations of classical 
chaos that have been studied. This volume is rich in examples. One of the 
more intriguing suggestions is that chaos plays a role in irreversibility and 
dissipation. 

The program of the symposium which inspired this issue is included 
here so that the reader might get the flavor of the many topics addressed. 
We hope that the papers presented here further spark the readers' curiosity 
and delight in the subtleness of nature and inspire her or him to address 
the deeper question of "Under what circumstances is there chaos (and in 
what sense) in 'pure' quantum mechanics?" 

This conference was supported by Navy Grant No. n00014-91-J-1677. 

Joel L. Lebowitz and Peter J. Reynolds* 

* Office of Naval Research, Physics Division, 800 North Quincy Street, Arlington, Virginia 22217. 


